
Experience in Offloading Protocol Processing to a Programmable
NIC

Arthur B. Maccabe, Wenbin Zhu
�

, Jim Otto, Rolf Riesen†

April 2002

Abstract

Offloading protocol processing will become an impor-
tant tool in supporting our efforts to deliver increasing
bandwidth to applications. In this paper we describe our
experience in offloading protocol processing to a pro-
grammable gigabit Ethernet network interface card. For
our experiments, we selected a simple RTS/CTS (request
to send/clear to send) protocol called RMPP (Reliable
Message Passing Protocol). This protocol provides end-
to-end flow control and full message retransmit in the case
of a lost or corrupt packet. By carefully selecting parts of
the protocol for offloading, we were able to improve the
bandwidth delivered to MPI applications from approxi-
mately 280 Mb/s to approximately 700 Mb/s using stan-
dard, 1500 byte, Ethernet frames. Using “jumbo”, 9000
byte, frames the bandwidth improves from approximately
425 Mb/s to 840 Mb/s. Moreover, we were able to show a
significant increase in the availability of the host proces-
sor.

1 Introduction

As network transmission rates have increased, it has be-
come increasingly difficult to deliver this increase to ap-
plications. Delivering this bandwidth to applications re-
quires that several bottlenecks, including the speed of the

�

A. B. Maccabe and W. Zhu are with the Computer Science Depart-
ment, University of New Mexico, Albuquerque NM 87131-1386. This
work was supported in part by Sandia National Laboratories under con-
tract number AP-1739.

†J. Otto and R. Riesen are with the Scalable Computing Systems
Department, Sandia National Laboratories, Org 9223, MS 1110, Albu-
querque, NM 87185-1110

I/O bus, memory copy rates, and processor capacity, be
addressed. In this paper, we consider the bottleneck asso-
ciated with processor capacity. In particular, we consider
migrating part of the processing associated with com-
munication protocols from the host processor to a pro-
grammable NIC (Network Interface Controller).

This offloading of protocol processing has two signif-
icant benefits. First, by removing the processor capacity
bottleneck, it results in improved communication band-
width. Second, by moving protocol processing to the
NIC, we will improve the availability of the host proces-
sor for use by application programs.

While there are clear advantages associated with of-
floading protocol processing, we must be careful in how
much work we offload to the NIC. Current NICs have
fairly severe limits in both memory capacity and process-
ing power. For example, the Alteon Acenics only have
2MB of local RAM and two 88 MHz processors.

The remainder of this paper is organized as follows.
The next section explores the nature of the processor ca-
pacity bottleneck. In Section 3 we describe the protocol
that provided the basis for our offloading experiments.
Section 4 describes the steps that we undertook in of-
floading parts of this protocol. Section 5 describes the
results of our offloading experiment. Section 6 discusses
related work. Finally, Section 7 presents our conclusions
and plans for further work.

1

Interface
Network

trap

Network Driver

OS

Protocol Stack

interrupt

Application

MPI Library

Figure 1: Typical Implementation of a Protocol Stack

2 Understanding the Processor Ca-
pacity Bottleneck

Given the instruction processing rates of modern proces-
sors, it may be hard to imagine that processor capacity
could represent a significant bottleneck in any aspect of
communication or computation. Moreover, considering
the limited instruction rates of the processors available on
NICs, it may seem contradictory that offloading any pro-
cessing to a NIC processor will provide any significant
benefit. Ultimately, the issue boils down to the costs as-
sociated with interrupts and traps on modern processors.

To support high-performance, parallel computations,
we are interested in performance, as measured by MPI
(the Message Passing Interface)[8] applications. Figure 1
shows the typical implementation of a communication
protocol stack. Because the host processor is involved in
every packet transmission, the strategy shown in Figure 1
implies a significant amount of overhead. In particular,
the host processor will receive a large number of inter-
rupts to handle incoming packets.

If not carefully controlled, communication overhead
can quickly dominate all other concerns. As an example
we consider minimum inter-arrival times for 1500 byte
Ethernet frames (ignoring the preamble, frame start de-
limiter, Ethernet header, checksum, and inter-frame gap.)
Table 1 summarizes frame inter-arrival times for several
network transmission rates. As an example, the inter-
arrival time for 100Mb Ethernet was calculated as:

1500B � 8b
B

� 1
100Mb/s

� 120µs

Through indirect measurement, we have observed that

Table 1: Minimum Inter-arrival Time for 1500 Byte Eth-
ernet Frames

Network Rate Inter-arrival Time
10 Mb/s 1200 µs
100 Mb/s 120 µs
1 Gb/s 12 µs
10 Gb/s 1.2 µs

interrupt overhead for an empty interrupt handler is be-
tween five and ten microseconds on current generation
computing systems. Interrupt overhead measures the pro-
cessing time taken from the application to handle an inter-
rupt. Interrupt latency, in contrast, measures how quickly
the computing system can respond to an interrupt. By
throwing away all work in progress on a pipelined pro-
cessor, a CPU designer could reduce the latency of an
interrupt; however, the interrupt overhead would not be
reduced as the work that was discarded will need to be
reproduced when the application is re-started after the in-
terrupt has been processed.

Assuming that interrupt overheads are 10 microsec-
onds, including packet processing, we see that the com-
munication overhead will be approximately 83% (10 out
of every 12 microseconds is dedicated to processing pack-
ets) for Gigabit Ethernet!

Two approaches are commonly used to reduce the com-
munication overhead for Gigabit Ethernet: jumbo frames
and interrupt coalescing. Jumbo frames increase the
frame size from 1500 bytes to 9000 bytes. In the case
of Gigabit Ethernet, this increases the minimum frame
inter-arrival time from 12 microseconds to 72 microsec-
onds. This will reduce the communication overhead sub-
stantially. Unfortunately, this only works for larger mes-
sages and will not be particularly helpful for 10 Gigabit
Ethernet.

Interrupt coalescing holds interrupts (at the NIC) un-
til a specified number of packets have arrived or a spec-
ified period of time has elapsed, which ever comes first.
This reduces communication overhead by throttling inter-
rupts associated with communication. When a constant
stream of frames is arriving at a node, interrupt coalescing
amortizes the overhead associated with an interrupt over a
collection of frames. This approach will work well, with

2

higher speed networks, but introduces a high degree of
variability in the latency for small messages.

Our approach to dealing with this problem is to of-
fload small parts of the protocol processing onto the NIC.
In particular, we offload message fragmentation and re-
assembly. In addition, we avoid unnecessary memory
copies which further reduces processor overhead.

3 The RMPP Protocol

For our experimentation, we chose a simple RTS/CTS
protocol called RMPP[10]. RMPP supports end-to-end
flow control and message-level retransmission in the event
of a dropped or corrupt data packet. Figure 2 presents a
graphical illustration of the packets used in this protocol.
Because it is not important in the context of this paper, we
will not discuss the fault tolerance aspects of this protocol.
Instead, we will focus on the flow control properties.

The first step in sending a message is the transmission
of an RTS (Request To Send) packet from the sender to
the destination (receiver). This packet includes an RMPP
header (indicating that it is an RTS packet) and the initial
data of the message. The packet will be filled with mes-
sage data up to the MTU (Maximum Transmission Unit)
of the underlying network. Importantly, the RTS packet
should include headers for all upper level protocols. For
example, a header constructed by the MPI library.

When the destination receives an RTS packet, it can use
the data in the RTS packet (i.e., the headers for the upper
level protocols) to determine where the message should
be delivered. For example, it could match the incoming
message to a pre-posted MPI receive issued by an appli-
cation on the receiving node. Once the destination of the
incoming message is known, the receiver can reply with
a CTS (Clear To Send) packet. This packet indicates the
number of data packets that the sender is permitted to send
before receiving the next CTS.

Each CTS enables the transmission of n data packets
and is used to control the flow of data from the sender. The
actual value of n is at least 1 and will reflect the minimum
of: the space required for 16 data packets, the space avail-
able in the application (this may reflect “pinned” pages),
and the buffer space available on the NIC.

When the sender receives a CTS packet, it transmits
the allowed number of data packets and, assuming that

the message contains more data, sends an RSM1 (Request
to Send More) to request the transmission of more data
packets. Once the sender has transmitted all of the data
packets, it sends an END packet, indicating that it is done
sending the current message. The receiver acknowledges
receipt of the message by sending an ACK packet. Upon
receiving the ACK packet, the sender can reclaim any
state related to the message transmission (the delivery is
complete) and send a CLEANUP packet to the receiver.
Finally, when it receives a CLEANUP packet, the receiver
knows that the sender knows that the message has been
delivered and the receiver can reclaim any resources asso-
ciated with the message transmission. (If the CLEANUP
packet is dropped, the receiver will time out on receiving
the CLEANUP and will then reclaim these resources.)

In considering the RMPP protocol that we have de-
scribed, notice that all management decisions are made,
by the receiver, when handling an RTS or RSM packet.
By the time the receiver has generated the CTS packet,
it has made all of the significant management decisions,
including: where the cleared data packets will be placed
(in the application’s space) and the NIC buffer space that
will be used for incoming packets. Once these decisions
have been made, responses to all other packets (excluding
the END, ACK, and CLEANUP) packets are straightfor-
ward. This observation lead to our approach for protocol
offloading.

4 Steps in Protocol Offloading

The RMPP protocol described in the previous section was
developed as a reliable transport layer for implementing
the Portals 3.0 API[1] on Myrinet. Our first step, step 0,
was to make the protocol run on Gigabit Ethernet using
the Alteon ACENICs. The next two steps involved of-
floading the handling of data packets: first on the receiver,
then on the sender. Finally, we improved the performance
of the protocol by moving the RTS packets earlier in the
stream of data packets to maintain a constant stream of
data packets.

1Like the initial RTS, each RSM is actually a flag in the header of
the last data packet. For this presentation, it is easier to think of this as a
separate packet and the actual implementation as an optimization.

3

RTS

CTS CTS

end

ACK

cleanup

...

16 data

...

16 data

...

16 data
Sender

Receiver

. . .

Time

RSM

Figure 2: Message exchanges in the RMPP protocol

4.1 Step 0: Porting RMPP to Gigabit Eth-
ernet

Implementation of the RMPP protocol is based on two
Linux kernel modules, the Portals module and the RMPP
module, and a Myrinet control program (MCP), the
packet MCP. The primary responsibility of the packet
MCP is to relay packets between the RMPP module and
the Myrinet network. In addition, this control program
coalesces interrupts and provides buffers for incoming
and outgoing packets. The RMPP module is responsi-
ble for scheduling the use of the resources provided by
the NIC (buffers) and implementing the RMPP protocol.
The Portals module implements the Portals API. From
the perspective of the RMPP module, the Portals module
provides the final destination for each incoming message
when the initial RTS for a message is received.

The decomposition of this implementation into the Por-
tals module, the RMPP module, and the packet MCP re-
flects a partitioning based on policy versus mechanism.
The Portals module provides the policy for message de-
livery while the RMPP module provides the mechanism
needed to implement this policy. Similarly, the RMPP
module provides the policy needed to control multiple
flows, while the packet MCP implements these flows by
sending and receiving network packets.

Before offloading parts of the RMPP protocol onto the
Alteon ACENIC Gigabit Ethernet NIC, we decided to in-
tegrate this driver into the Linux Network stack. In par-
ticular, we established an skbuf wrapper for the packets
used by the RMPP module. Linux uses skbuf s as the ba-
sis for all network traffic. By providing a translation be-
tween skbuf s and RMPP packets, this wrapper makes it
easy to use the RMPP protocol with any of the existing
Linux network device drivers, including the driver for the

ACENIC
Alteon Packet

MCP

Portals
Module

MPI
Program

Network
Device Driver

skbuf
wrapper

RMPP

Linux Kernel

PCI Devices

Ethernet Myrinet

Messages

Packets

Application

Figure 3: The Structure of our Initial RMPP Implementa-
tion

Alteon ACENIC. Figure 3 illustrates the structure of our
initial implementation, including the skbuf wrapper.

4.2 Step 1: Receive Offloading

Once we had our initial implementation working, we of-
floaded the processing of incoming data packets from the
RMPP module to the NIC control program. Whenever
the RMPP module generates a CTS packet, it also pushes
physical addresses for the memory region in which the
“cleared” packets will be placed. Now, when the cleared
data packets arrive at the NIC, they can be transferred di-
rectly to application memory. The resulting information

4

data

RMPP

buffer
descriptor

Portals

data
receive

buffer
desc

Application

other

outbound packets

msg header

delivery complete

put, get
event

data

data

NIC

Figure 4: Processing Incoming Data Packets on the NIC

and packet flow is presented in Figure 4.

There are two significant advantages that should be ap-
parent from this modification. First, we have significantly
reduced the number of interrupts that the host processor
will need to field. Second, we have reduced the number
of copies for incoming data packets – these packets are
delivered directly to the application with no intermediate
copies.

Moreover, we have not significantly increased the
amount of work that the NIC needs to do. As before,
the NIC needs to schedule a DMA operation to transfer
the data packet from NIC memory to host memory. In
the previous implementation the target address was deter-
mined by the next entry in a queue of memory descriptors
provided by the kernel. Now, the NIC control program
needs to use information in the incoming packet header as
an index into an array of physical addresses to determine
the host memory target address for this DMA operation.
In essence, the NIC needs to be able to demultiplex multi-
ple incoming data streams. In addition, the NIC needs to
watch for dropped packets and notify the RMPP module
whenever it detects an out of order packet. (The RMPP
module uses a timeout to detect loss of the last packet in
a group of cleared packets.) Neither of these activities
should have a significant impact on the responsiveness of
the NIC.

data

CTS

RMPP

buffer
descriptor

Portals

data
receive

data
transmit

buffer
desc

buffer
desc

Application

CTS

other

other

outbound packets

msg header

delivery complete

put, get
event

datadata

data

NIC

data & RSM

Figure 5: Sending from the NIC

4.3 Step 2: Send Offloading

In the next step we offloaded the processing associated
with sending messages from the RMPP module to the NIC
control program. With this modification, when an appli-
cation program initiates a message send, the RMPP mod-
ule sends the initial RTS packet and pushes a descriptor of
the outgoing message buffer to the NIC. This descriptor
includes the physical addresses needed to transfer parts of
the message from host memory to NIC memory during
the formation of the data packets. Given this informa-
tion, the NIC control program is now in a position to re-
spond to incoming CTS packets by building and sending
the data packets that are cleared by the CTS. Moreover,
the NIC control program can also generate RSM packets.
Figure 5 illustrates the information and packet flow that
results from this modification.

The primary advantage in this step is avoiding the
memory copy from the application space to the interme-
diate kernel buffers. In addition, we save the occasional
interrupt that would be needed to process incoming CTS
packets.

5

4.4 Step 3: Pipeline Management

In all of the earlier implementations, the RSM is sent with
the last of the cleared data packets. This creates a bub-
ble in the stream of data packets while the receiver pro-
cesses the RSM, generates the CTS and sends it back to
the sender. In the final step, we experimented with mov-
ing the RSM earlier in the stream to avoid these bubbles.

5 Results

We evaluate our modifications by measuring improve-
ments to bandwidth and processor availability. All of the
results reported in this section we obtained using two sys-
tems connected by a “crossover” Gigabit Ethernet cable.
Each node has a 500 MHz Pentium III.

5.1 Bandwidth Results

We measure bandwidth using a traditional ping-pong test,
using MPI for all communication. Pseudocode for this
measurement is shown in Figure 6. In this test, the ping
process sends a message to a pong process. The pong
process replies by returning the original message. The test
is repeated for a collection of message sizes and within
each message size, several times to account for memory
effects. For each message size, the test reports the latency.
Bandwidth is calculated by dividing the message size by
the latency. The actual measurement that we use reports
the minimum, maximum, and average latency.

Others measure availability during communication by
simply flooding a node with messages. By using a ping-
pong test, we can easily measure the overhead associated
with sending and receiving messages. In order to observe
full bandwidth, our ping-pong test starts by sending sev-
eral messages. This eliminates the bubble that would oth-
erwise occur while the message is turned around by the
application process.

Figure 7 presents bandwidth curves for the original
implementation, an implementation that offloads receive
handling, and an implementation that offloads both send
and receive handling. As can be seen, each modification
to the implementation results in a significant improvement
in the observed bandwidth. Offloading the processing as-
sociated with incoming data packets results in a band-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100000 200000 300000 400000 500000 600000 700000 800000

B
an

dw
id

th
 (

M
B

/s
)

Buffer size (kB)

Offload Send and Receive
Offload Receive

Original

Figure 7: Bandwidth Improvement for Standard (1500
Byte) Frames

width increase from 35 MB/s to 50 MB/s, a 30% im-
provement. Additionally, offloading the processing asso-
ciated with sending messages increases the bandwidth to
69 MB/s, an addition 28% improvement.

To gain insight into the improvement observed in Fig-
ure 7, we calculated the per packet latency. For the origi-
nal implementation this value stabilizes at approximately
40 microseconds. When we offload receive processing,
this values stabilizes at approximately 27.5 microseconds,
an improvement of 12.5 microseconds per packet. When
we also offload the send processing, this value stabilizes
at approximately 20 microseconds, an additional savings
of 7.5 microseconds per packet.

Because the only significant improvement associated
with offloading send processing is the avoidance of a
memory copy, we conclude that the cost of copying a
packet from application space to kernel space is close to
7.5 microseconds. Moreover, we conclude that the addi-
tional savings (5 microseconds) observed in offloading re-
ceive processing is due to the elimination of the per packet
interrupt. That is, the elimination of the host processor
bottleneck.

After offloading the processing associated with send-
ing messages and receiving data packets, we measured
the performance improvements when moving the RSM
earlier in the stream. Figure 8 presents the bandwidth im-
provements associated with moving the RSM earlier in
the stream of data packets. The “Pre 0” reflects the de-

6

process ping
�

char buffer[MAXBUF];

msize = MIN;
while(msize � MAXBUF)

�

t1 = gettime();
loop n times

�

send buffer;
receive buffer;�

latency = (gettime() � t1) / 2 � n;
report msize, latency;
msize += INC;�

�

process pong
�

char buffer[MAXBUF];

msize = MIN;
while(msize � MAXBUF)

�

p
loop n times

�

receive buffer;
send buffer;�

msize += INC;�
�

Figure 6: Pseudocode for the Ping-Pong Test

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100000 200000 300000 400000 500000 600000 700000 800000

B
an

dw
id

th
 (

M
B

/s
)

Buffer size (B)

Pre 15
Pre 12
Pre 9
Pre 6
Pre 3
Pre 0

Figure 8: Bandwidth Improvement for Early RSM, 1500
Byte Frames

fault case of transmitting the RSM in the last cleared data
packet. The other graphs represent experiments where the
RSM was sent 3, 6, 9, 12, or 15 data packets before the
end of set of cleared packets. Sending the RSM 15 pack-
ets before the last cleared packet increases the bandwidth
from 69 MB/s to 88 MB/s, an improvement of nearly
22%.

If we assume that the “Pre 15” graph represents the best
we can do by pre-sending the RSM, we can calculate the

length of the bubble in the stream of data packets. As we
noted earlier, offloading both the reception of data pack-
ets and the sending of messages results in a per packet la-
tency of 20 microseconds. By sending the RSM 15 pack-
ets before the end of the cleared data packets reduces this
to 15.5 microseconds, a savings of 4.5 microseconds per
packet. Because we generate an RSM/CTS pair for every
16 packets, we calculate the bubble size as 16 � 4 � 5 � 72
microseconds.

Least the size of the bubble seem too large, Table 2
summarizes all of the activities that must take place during
the bubble with approximate times. While we do not have
detailed measurements to support these times, we have
observed that it takes approximately 5 microseconds to
initiate any activity on the NICs.

5.2 Processor Availability Results

Netperf [4] is commonly used to measure processor avail-
ability during communication. To measure processor
availability, netperf measures the time taken to execute
a delay loop while the node is quiescent. Then, it mea-
sures the time taken for the same delay loop while the
node is involved in communication. The ratio between
the first and second measurement provides the availability
of the host processor during communication. In netperf,
the code for the delay loop and the code used to drive the

7

Table 2: Activities in the Bubble and their Approximate
Times

Step µs
Transmit data packet with RSM 15
Receive packet and recognize RSM 5
Transfer data to application memory 15
Transfer header to OS memory 5
Interrupt host processor 10
Process header in and generate CTS 5
Transfer addrs for cleared pkts to NIC 5
Transfer CTS to the NIC 5
Transmit CTS 5
Processing CTS 5
Total 75

communication are run in two separate processes.
Netperf was developed to measure the performance of

TCP/IP and UDP/IP. It works very well in this environ-
ment. However, there are two problems with the netperf
approach when applied to MPI programs. First, MPI en-
vironments typically assume that there will be a single
process running on a node. As such, we should mea-
sure processor availability for a single MPI task while
communication is progressing in the background (using
non-blocking sends and receives). Second, and perhaps
more important, the netperf approach assumes that the
process driving the communication relinquishes the pro-
cessor when it waits for an incoming message. In the case
of netperf, this is accomplished using a select call. Unfor-
tunately, many MPI implementations use OS-bypass. In
these implementations, waiting is typically implemented
using busy waiting. (This is reasonable, given the previ-
ous assumption that there is only one process running on
the node.)

To avoid these problems, we modify the body of the
outer loop for the ping process used to measure band-
width. The new loop body is presented in Figure 9. On
each iteration of the ping process posts an nonblocking
send and a nonblocking receive. It then enters a loop in
which it polls for completion of the receive. Inside of this
loop, the ping process simulates work by delaying for an
interval specified by the polling interval, p. Notice that
the total amount of work to be done drives the measure-

t1 = gettime();
repeat

�

isend buffer;
ireceive buffer;
repeat

loop p times work � � ;
until receive done or work � 0;
n++;

until work � 0;
duration = gettime() � t1;
report duration, n;

Figure 9: Measuring Processor Availability

ment. To determine processor availability, we compare
the time it takes to complete this code when the pong pro-
cess sends reply messages versus the time when the pong
process simply consumes the first message.

Figure 10 illustrates the relationships between polling
interval, observed bandwidth, and observed processor
availability when using messages with 32KB of data. In
examining the graphs in this figure, we first note that when
we offload both send and receive the bandwidth and pro-
cessor availability are both relatively high, 42MB/s and
85%, respectively. When we only offload the receive pro-
cessing, the bandwidth is significantly higher than it is for
the original implementation (38 MB/s versus 21 MB/s),
but the host processor availability is the same (60%). In
essence, we are using the same amount of processing to
handle more communication.

Given the tradeoff between processor availability and
bandwidth, it is often difficult to easily characterize per-
formance improvements. One approach is to fix the band-
width and compare the corresponding availability is. As
an example, if we fix the bandwidth at 21 MB/s, the pro-
cessor availability is approximately 60%, 80%, and 95%,
for the original implementation, receive offload, and re-
ceive and transmit offload, respectively. An improvement
of 33% for offloading receive processing and an improve-
ment of 58% for offloading both send and receive process-
ing.

It is also helpful to consider the effective bandwidth,
the product of the availability and the bandwidth. Figure
11 presents effective bandwidth graphs when the message
size is 32K. Here, the improvement becomes much more

8

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 100 1000 10000 100000 1e+06 1e+07
 0

 0.2

 0.4

 0.6

 0.8

 1

B
an

dw
id

th
 (

M
B

/s
)

H
os

t P
ro

ce
ss

or
 A

va
ila

bl
ilt

y

Polling Factor

Availability rxtx offload
Availability rcv offload

Availability orig
Bandwidth rxtx offload
Bandwidth rcv offload

Bandwidth orig.

Figure 10: Communication Bandwidth and Processor
Availability (Message Size is 32K)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
B

/s
)

*
A

va
ila

bi
lit

y

Polling Factor

Offload Send and Receive
Offload Receive

Original

Figure 11: Effective Bandwidth (Message Size is 32K)

apparent. When we offload receive processing, the ef-
fective bandwidth improves from 13 MB/s to 23 MB/s, a
factor of 1.77. When we offload both send and receive
processing, the effective bandwidth goes to 36 MB/s, a
factor of 2.77 improvement.

6 Related Work

Earlier work in the Scalable Systems Lab at UNM [3, 13]
showed that offloading fragmentation and defragmenta-
tion for IP (Internet Protocol) packets could result in a sig-
nificant improvement in communication bandwidth and

host processor availability. Like the work reported in this
paper, IP fragmentation studies were based on the Alteon
Acenic. While the IP fragmentation work was aimed at
improving the performance of IP, the work reported in this
paper aims to improve the performance of MPI commu-
nication.

To avoid the problems associated with memory copies,
communication latency, and communication overhead,
several groups have proposed protocols that support “OS
bypass” [2, 12, 6, 9]. In concept, each process gets its
own virtual network interface which it can use directly
(bypassing the need to go through the operating system).
Needless to say, these proposals do not entirely bypass the
OS. They rely on interaction with the OS to enforce re-
source protection (usually limited to address translation)
or to ensure that resources (page frames) are available. In
the OS bypass strategy, memory copies are avoided by us-
ing buffers in the application memory rather than buffers
in the operating system (as such, the application is in con-
trol of when copies need to be made). Communication la-
tency is reduced by avoiding the need to trap into OS for
sends and interrupt the OS for receives. Communication
overhead is also reduced by the elimination of interrupts.

While we borrow many ideas from OS bypass, we
use the OS to control the use of network resources and
to match incoming messages with their final destination.
When MPI applications try to overlap communication
with computation, having a mechanism to match incom-
ing messages with pre-posted receives offers significant
performance advantages [7]. Providing this mechanism
requires some intervention by the OS, either as we have
done in processing the RTS or in providing scheduling for
multiple processes or threads.

The EMP [11] project at Ohio Supercomputer Center
takes offloading one step further and provides matching
for MPI messages on the NIC. Using similar hardware
(Alteon Acenic NICs and relatively slow Pentium proces-
sors), they report impressive performance numbers: 880
Mb/s bandwidth and 23 µs latency. In contrast to the EMP
approach, we have started from the perspective that the
OS should manage the resources provided by the NIC.
This includes buffer space, information about messages in
transit, and flow control. EMP starts all resource manage-
ment on the NIC or in the application. We are currently
in the process of migrating more of this management into
the NIC and the EMP project is looking into providing

9

some NIC management in the OS.

7 Conclusions and Future Work

Through our experiments, we have shown that protocol
offloading is a viable approach to reducing the processor
capacity bottleneck and improving communication per-
formance. So far, we have only offloaded the handling
associated with data packets. All control packets (with
the exception of CTS packets) are handled by the OS and,
in particular, the RMPP and Portals modules. When we
started this work, we expected to offload all of RMPP and
Portals to the NIC. And, while we plan to continue se-
lectively offloading more of the protocol processing, this
represents an interesting milestone in our efforts.

While programmable NICs are a great asset in the kinds
of studies that we are engaged in, they are never price-
competitive with NICs that do not support a programming
interface. Because the processing that we have offloaded
is very straightforward and the resource management is
done by the OS, one could easily imagine the develop-
ment of NICs that incorporate only this level of process-
ing. In this context, it is worth noting that the Portals mod-
ule simply provides an answer to the question of where
an incoming message should be placed. While we have
focused on MPI-based message passing, it is interesting
to consider other ways that this question might be an-
swered. One obvious possibility is to have the OS match
the incoming data with the application buffer provided in
a socket read operation. Additionally increasing the MTU
to a reasonable size would provide a simple, true zero-
copy TCP capability that has been so elusive [5].

We intend to examine other parts of the protocol pro-
cessing that could be offloaded to the NIC. While it might
be natural to assume that we would next offload the re-
transmit logic to the NIC (as is done in EMP), we plan
to leave this in part of the protocol processing in the OS.
First, because we expect that dropped packets will be in-
frequent, we would prefer to keep this part of the protocol
processing out of the fast path whenever as possible. Sec-
ond, this part of the protocol processing is most closely
related to resource management and naturally belongs in
the OS.

Rather than offloading the retransmission logic, we will
explore ways in which the matching of incoming mes-

sages to pre-posted receives can be offloaded to the NIC.
The goal is to identify a general purpose matching strat-
egy that could be used for a variety of upper level proto-
cols and implement this on the NIC. If we can provide the
NIC with enough information to match an incoming mes-
sage with a pre-posted receive, the NIC will be able to: 1)
notify the local OS that it has initiated a receive, 2) gener-
ate and send a CTS to enable the flow of more data pack-
ets, and 3) transfer the initial and subsequent data packets
directly to the application. This should result in a signifi-
cant reduction in latency for small messages.

Acknowledgements

This work would not have been possible without support
from a variety of places. Much of the UNM effort was
funded by a contract from Sandia National Laboratories.
The Alteon Acenic NICs were borrowed from the Albu-
querque High Performance Computing Center and were
acquired as part of an IBM SUR (Sponsored University
Research) grant.

We also had a great deal of support from our colleagues
in the Scalable Systems Lab at UNM. Patricia Gilfeather
and Todd Underwood were very helpful in our initial ef-
forts to get code running on the Acenics. Bill Lawry and
Riley Wilson provided the benchmarking tool used to ob-
tain the processor availability results.

Finally, Pete Wyckoff from the Ohio Supercomputer
Center was very helpful in providing debugging support
and guidance in subtle programming issues related to the
Acenics. Pete also read an early draft of this paper and
offered many helpful suggestions

References

[1] Ron Brightwell, Tramm Hudson, Rolf Riesen, and
Arthur B. Maccabe. The portals 3.0 message passing
interface. Technical Report SAND99-2959, Sandia
National Laboratories, December 1999.

[2] Compaq, Microsoft, and Intel. Virtual interface ar-
chitecture specification version 1.0. Technical re-
port, Compaq, Microsoft, and Intel, December 1997.

10

[3] Patricia Gilfeather and Todd Underwood. Fragmen-
tation and high performance IP. In CAC Workshop,
April 2001.

[4] Rick Jones. The network performance home page.
http://www.netperf.org/netperf/NetperfPage.html.

[5] Christian Kurmann, Michel Müller, Felix
Rauch, and Thomas M. Stricker. Speculative
defragmentation–a technique to improve the
communication in software efficiency for gigabit
ethernet. In Proceedings of the 9th International
Symposium on High Performance Distributed
Computing (HPDC), August 2000.

[6] Mario Lauria, Scott Pakin, and Andrew Chien. Ef-
ficient layering for high speed communication: Fast
messages 2.x. In Proceedings of the IEEE Interna-
tional Symposium on High Performance Distributed
Computing, 1998.

[7] Arthur B. Maccabe, William Lawry, Christopher
Wilson, and Rolf Riesen. Distributing application
and OS functionality to improve application perfor-
mance. Technical Report TR-CS-2002-11, Com-
puter Science Department, The University of New
Mexico, April 2002.

[8] Message Passing Interface Forum. MPI: A message-
passing interface standard. The International Jour-
nal of Supercomputer Applications and High Perfor-
mance Computing, 8, 1994.

[9] Myricom, Inc. The GM message passing system.
Technical report, Myricom, Inc., 1997.

[10] Rolf Riesen. Message-Based, Error-Correcting Pro-
tocols for Scalable High-Performance Networks.
PhD thesis, The University of New Mexico,
Computer Science Department, Albuquerque, NM
87131, 2002.

[11] Piyush Shivam, Pete Wyckoff, and Dhabaleswar
Panda. EMP: Zero-copy OS-bypass NIC-driven gi-
gabit Ethernet message passing. In Supercomputing,
November 2001.

[12] Task Group of Technical Committee T11. Informa-
tion technology - scheduled transfer protocol - work-
ing draft 2.0. Technical report, Accredited Standards
Committee NCITS, July 1998.

[13] Todd Underwood. Fragmentation as a strategy for
high-speed IP networking. Master’s thesis, The Uni-
versity of New Mexico, Computer Science Depart-
ment, Albuquerque, NM 87131, 2001.

[14] Wenbin Zhu. OS bypass investigation and ex-
perimentation. Master’s thesis, The University of
New Mexico, Computer Science Department, Albu-
querque, NM 87131, 2002.

11

